Which linear-fractional composition operators are essentially normal?
نویسندگان
چکیده
منابع مشابه
Which Linear-fractional Composition Operators Are Essentially Normal?
We characterize the essentially normal composition operators induced on the Hardy space H2 by linear fractional maps; they are either compact, normal, or (the nontrivial case) induced by parabolic non-automorphisms. These parabolic maps induce the first known examples of nontrivially essentially normal composition operators. In addition we characterize those linearfractionally induced compositi...
متن کاملEssentially normal operators
This is a survey of essentially normal operators and related developments. There is an overview of Weyl–von Neumann theorems about expressing normal operators as diagonal plus compact operators. Then we consider the Brown–Douglas–Fillmore theorem classifying essentially normal operators. Finally we discuss almost commuting matrices, and how they were used to obtain two other proofs of the BDF t...
متن کاملNorms of Linear-fractional Composition Operators
We obtain a representation for the norm of the composition operator Cφ on the Hardy space H 2 whenever φ is a linear-fractional mapping of the form φ(z) = b/(cz + d). The representation shows that, for such mappings φ, the norm of Cφ always exceeds the essential norm of Cφ. Moreover, it shows that a formula obtained by Cowen for the norms of composition operators induced by mappings of the form...
متن کاملLinear Fractional Composition Operators on H 2
If φ is an analytic function mapping the unit disk D into itself, the composition operator Cφ is the operator on H 2 given by Cφf = f ◦φ. The structure of the composition operator Cφ is usually complex, even if the function φ is fairly simple. In this paper, we consider composition operators whose symbol φ is a linear fractional transformation mapping the disk into itself. That is, we will assu...
متن کاملWhich subnormal Toeplitz operators are either normal or analytic ?
We study subnormal Toeplitz operators on the vector-valued Hardy space of the unit circle, along with an appropriate reformulation of P.R. Halmos’s Problem 5: Which subnormal block Toeplitz operators are either normal or analytic ? We extend and prove Abrahamse’s Theorem to the case of matrix-valued symbols; that is, we show that every subnormal block Toeplitz operator with bounded type symbol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(03)00005-2